Abstract

The effect of a flexible secondary system (FSS) on the design spectra is studied in this paper. An FSS affects the primary structure (PS) during ground excitation differently than a secondary system that is rigidly attached to it. A modal superposition analysis is performed on a 2DOF system (PS + FSS). The influence of various parameters such as mass ratio and length of FSS on the design spectra is addressed. A methodology to estimate the spectral acceleration of the PS with FSS is developed. A design expression is proposed using statistical nonlinear regression and artificial neural network (ANN) to estimate the spectral acceleration of PS with FSS as a function of the structural period, length of FSS, and mass ratio. ANN modelling is proved to be more efficient than nonlinear regression model. An example calculation is shown for the estimation of spectral acceleration of the PS using ANN and nonlinear regression models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.