Abstract
We present a comparison between experimental and calculated vibrational infrared and Raman spectra (harmonic frequencies, absorption intensities, and scattering activities) for two push−pull molecules, [(2E,4E)-5-(dimethylamino)penta-2,4-dienylidene]malononitrile and 5-[(2E,4E)-5-(diethylamino)penta-2,4-dienylidene]-1,3-diethylpyrimidine-2,4,6(1H,3H,5H)-trione, widely studied for their nonlinear optical properties, in several solvents. The polarizable continuum model (PCM) has been used to describe the solvents, and the molecules have been treated at the density functional theory (DFT) level. Local field effects on IR intensities and Raman activities are included in the calculations. Solvent effects on absorption and scattering intensities are predicted fairly well. A number of reasons for discrepancies between calculated and experimental results are discussed. The variation of the bond length alternation (BLA) of the studied molecules as a function of the solvent is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.