Abstract
Numerical tools are now used widely in the prediction of material properties necessary in order to gain a better understanding of the relationship between material properties and performance, to improve the reliability of processes and the quality of the final product, and to reduce costs, waste and energy use. In this paper, the solidification properties and the microstructure of some commercial Ni based alloys were analysed and predicted numerically using the ProCAST software. The microstructure of a sample obtained by the direct additive laser growth, a new additive manufacturing technique based on the selective laser melting, is presented and discussed. Numerical approaches and software packages that can be used to model additive manufacturing processes are discussed and critically analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.