Abstract

Prediction of pathways of radionuclides, heavy metals and other harmful components isolated in cementitious matrices is considered critical in geochemical studies related to hazardous waste disposal [1-3]. Hence, rigorous multi-phase multi-aggregate thermodynamic models with appropriate kinetic and metastability constraints can be very helpful in solving this difficult problem. In a companion contribution [4], we demonstrate that usage of the Gibbs energy minimization (GEM) algorithms permits direct calculation of solid solution – aqueous solution (SSAS) equilibria which adequately describe the solubility data. The suggested "core" thermodynamic dataset can be extended and tuned on the basis of solubility, mineralogical and petrographical studies of fresh, aged and doped cements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.