Abstract

Solid–liquid interfacial energy of steel during solidification was measured predicted from the both experimental techniques of unidirectional solidification and thermal analysis applying the dendrite growth model and heterogeneous nucleation model. Solid–liquid interfacial energy changed depending on primary phase during solidification, i.e., that of primary δ phase was larger than that of γ phase. When the primary phase was the same, solid–liquid interfacial energy increased with increasing carbon content. Primary dendrite arm spacing changed depending on solid–liquid interfacial energy. A trace amount of bismuth which had the effect of a decrease in the solid–liquid interfacial energy of steel during solidification decreased primary and secondary dendrite arm spacing, significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.