Abstract

Precise solder bump shape prediction is crucial for the application of the solder jet bumping process to microelectronic component packaging. In the present study, numerical simulation of both the dynamics and phase change responses during a metal droplet impingement is conducted by introducing a nonconstant interfacial heat transfer coefficient, which varies with time and position. Comparison between the numerical and experimental results for a large metal droplet demonstrates the validity of the numerical method. The results of many simulation cases are presented corresponding to typical solder jet bumping conditions. Variations in the impact velocity, initial droplet size, and droplet temperature and substrate temperature are investigated to understand their impact on the formation of solder bumps

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call