Abstract
In this work, the recently proposed anisotropic yield function, Yld2004-18p [Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transformation based anisotropic yield function, Int. J. Plasticity 21, 1009], is implemented in a finite element (FE) code for application to the cup drawing simulation of a circular blank sheet. A short review of the Yld2004-18p relevant features is provided and the stress integration scheme for its implementation in FE codes is described. The simulation of the drawing process is conducted for an aluminum alloy sheet sample (AA2090-T3). The predicted and experimental cup height profiles (earing profiles) with six ears are shown to be in excellent agreement. Additional simulations on a ficticious material are performed in order to show that the yield function Yld2004-18p can lead to the prediction of cups with eight ears. In order to achieve these results, a sufficient number of input data are required to calculate the yield function coefficients. Finally, a simplified analytical approach that relates the earing profile to the r-value directionality is also presented in this paper. It is shown that this approach can be very useful as a first approximation of the earing profile of drawn cups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.