Abstract

In this study, the structural, electronic, vibrational, and mechanical properties of single-layer Antimony Oxyselenide (Sb2O2Se2) and its hydrogenated structure (Sb2O2Se2H2) are investigated by performing density functional theory-based first principles calculations. Geometry optimizations reveal that single-layer Sb2O2Se2 crystallizes in tetragonal structure which is shown to possess dynamical stability by means of phonon band dispersions. In addition, the mechanical stability of the predicted single layer is satisfied via the linear-elastic parameters. Electronically, it is revealed that single-layer Sb2O2Se2 exhibits metallic behavior whose highest occupied states are found to arise from the surface Se atoms, may be an indication for tuning the electronic features via surface functionalization. For the surface modification of Sb2O2Se2, top of each Se atom is saturated with a H atom and fully hydrogenated single-layer Sb2O2Se2H2 is shown to be an in-plane anisotropic structure. Phonon band dispersion calculations indicate the dynamical stability of Sb2O2Se2H2. Mechanically stable Sb2O2Se2H2 is found to possess anisotropic linear-elastic behavior, which is much softer than its pristine structure. Moreover, electronically a metallic-to-semiconducting transition is shown to occur as the unoccupied Se-orbitals are saturated via H atoms. Our work offers insights into prediction of a novel single-layer material, namely Sb2O2Se2, and reports the chemically-driven semiconducting behavior via hydrogenation, which may lead to the use of hydrogenated structure in solar cell, photoelectrode, or photocatalyst applications owing to its suitable band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.