Abstract

Single-event effects (SEE) are an important index of radiation resistance for fully depleted silicon on insulator (FDSOI) devices. The research into traditional FDSOI devices is based on simulation software, which is time consuming, requires a large amount of calculation, and has complex operations. In this paper, a prediction method for the SEE of FDSOI devices based on deep learning is proposed. The characterization parameters of SEE can be obtained quickly and accurately by inputting different particle incident conditions. The goodness of fit of the network curve for predicting drain transient current pulses can reach 0.996, and the accuracy of predicting the peak value of drain transient current and total collected charge can reach 94.00% and 96.95%, respectively. Compared with TCAD Sentaurus software, the simulation speed is increased by 5.10 × 102 and 1.38 × 103 times, respectively. This method can significantly reduce the computational cost, improve the simulation speed, and provide a new feasible method for the study of the single-event effect in FDSOI devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.