Abstract
Prediction methods to identify single-cross hybrids with superior yield performance have the potential to greatly improve the efficiency of commercial maize (Zea mays L.) hybrid breeding programs. Our objectives were to (1) identify marker loci associated with quantitative trait loci for hybrid performance or specific combining ability (SCA) in maize, (2) compare hybrid performance prediction by genotypic value estimates with that based on general combining ability (GCA) estimates, and (3) investigate a newly proposed combination of the GCA model with SCA predictions from genotypic value estimates. A total of 270 hybrids was evaluated for grain yield and grain dry matter content in four Dent x Flint factorial mating experiments, their parental inbred lines were genotyped with 20 AFLP primer-enzyme combinations. Markers associated significantly with hybrid performance and SCA were identified, genotypic values and SCA effects were estimated, and four hybrid performance prediction approaches were evaluated. For grain yield, between 38 and 98 significant markers were identified for hybrid performance and between zero and five for SCA. Estimates of prediction efficiency (R (2)) ranged from 0.46 to 0.86 for grain yield and from 0.59 to 0.96 for grain dry matter content. Models enhancing the GCA approach with SCA estimates resulted in the highest prediction efficiency if the SCA to GCA ratio was high. We conclude that it is advantageous for prediction of single-cross hybrids to enhance a GCA-based model with SCA effects estimated from molecular marker data, if SCA variances are of similar or larger importance as GCA variances.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.