Abstract

Artificial neural networks (ANNs) are computational tools that have found comprehensive utilization in solving many complex real world problems. Major benefits in using ANNs are their remarkable information-processing characteristics pertinent mainly to high parallelism, nonlinearity, fault and noise tolerance, and learning and generalization capabilities. An ANN approach is used to model the size of silver nanoparticles (Ag-NPs) in montmorillonite/chitosan bionanocomposites layers as a function of the silver nitrate concentration, reaction of temperature, chitosan percentage, and d-spacing of clay layers. The best ANN model is found and this final model is capable of predicting the size of nanosilver for a wide range of conditions with a mean absolute error of less than 0.004 and a regression error of about 1. Results obtained showed good ability predictive of neural network model for the prediction of the size of Ag-NPs in chemical reduction methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.