Abstract
Multilayer perceptron approach is a method that can be used to make predictions. The multilayer perceptron includes weighting coefficients which can be determined by different optimization techniques. The weighting coefficients between input layer and hidden layer, also between hidden layer and output layer is the important step for the solution of a multilayer perceptron, and optimized weighting coefficient is used for model predictions. Identifying the weighting coefficients of multilayer perceptron with genetic algorithms is called as geno-multilayer perceptron. In this study, geno-multilayer perceptron approach was used to predict significant wave height. For this purpose, geno-multilayer perceptron approach, a relatively new method, was applied to four stations located in the Lake Okeechobee, Florida, in this study. A comparison between the results of two different training (optimization) algorithms namely genetic algorithms and back propagation algorithms was performed. The prediction results show that optimized (trained) weighting coefficients by genetic algorithms reveal a relatively better agreement with observed data compared to back propagation algorithms. In order to make comparison between observed data and predicted results, statistical indexes including the mean relative error percentages, the mean square errors, the coefficient of efficiency and the chi-square (χ2) parameters were used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.