Abstract

The experimental conditions under which tokamak turbulence at hyperfine (electron gyroradius) scales is predicted to be significant and observable are described. The first quantitative predictions of fluctuation amplitudes, spectral features, and the associated electron energy transport are presented. A novel theoretical model which quantitatively describes the boundaries of the high-amplitude streamer transport regime is presented and shown to explain the gyrokinetic simulation results. This model uniquely includes consideration of two distinct secondary instabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.