Abstract

The precise prediction of painting man-hours is significant to ensure the efficient scheduling of shipyard production and maintain a stable production pace, which directly impacts shipbuilding cycles and costs. However, traditional forecasting methods suffer from issues such as low efficiency and poor accuracy. To solve this problem, this paper proposes a selective integrated learning model (ISA-SE) based on an improved simulated annealing algorithm to predict ship painting man-hours. Firstly, the improved particle swarm optimization (MPSO) algorithm and data grouping techniques are employed to achieve the optimal selection and hyperparameter optimization of base learners, constructing a candidate set of base learners. Subsequently, the simulated annealing algorithm is improved by adding random perturbations and using a parallel perturbation search mechanism to enhance the algorithm’s global search capability. Finally, an optimal set of base learners is composed of the candidate set utilizing the ISA-SE model, and a heterogeneous ensemble learning model is constructed with the optimal set of base learners to achieve the precise prediction of ship painting man-hours. The results indicate that the proposed ISA-SE model demonstrates improvements in accuracy, mean absolute error, and root mean square error compared to other models, validating the effectiveness and robustness of ISA-SE in predicting ship painting man-hours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call