Abstract

Shear strength of the soil is an important engineering parameter used in the design and audit of geo-technical structures. In this research, we aim to investigate and compare the performance of four machine learning methods, Particle Swarm Optimization - Adaptive Network based Fuzzy Inference System (PANFIS), Genetic Algorithm - Adaptive Network based Fuzzy Inference System (GANFIS), Support Vector Regression (SVR), and Artificial Neural Networks (ANN), for predicting the strength of soft soils. For this purpose, case studies of 188 plastic clay soil samples collected from two major projects, Nhat Tan and Cua Dai bridges in Viet Nam have been used for generating training and testing datasets for constructing and validating the models. Validation and comparison of the models have been carried out using RMSE, and R. The results show that the PANFIS has the highest prediction capability (RMSE = 0.038 and R = 0.601), followed by the GANFIS (RMSE = 0.04 and R = 0.569), SVR (RMSE = 0.044 and R = 0.549), and ANN (RMSE = 0.059 and R = 0.49). It can be concluded that out of four models the PANFIS indicates as a promising technique for prediction of the strength of soft soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.