Abstract

To provide more accurate and reliable predictions of the shear strength of ultrahigh-performance concrete (UHPC) beams, in this study, the machine learning (ML) approaches were employed to develop the data-driven models, and the ML models were interpreted using the Shapley additive explanations (SHAP) method. It was found that the ensemble models, particularly CatBoost, outperform individual ML models and traditional empirical models. The geometric dimensions and shear span-to-depth ratio were the most influential features for predicting the shear strength of UHPC beams, followed by the parameters of reinforcement and material properties of the UHPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.