Abstract
Abstract Shape distortions and warpage are a major source of problems for composite manufacturers. These distortions are usually accompanied by built up residual stresses. They can deform a component so that it becomes useless. It also has the capability to reduce the strength of the structure. In this paper, the three-dimensional version of the constitutive model originally proposed by Svanberg and Holmberg is employed to predict the warpage of a wing planform. The model takes into account important mechanisms such as thermal expansion, resin shrinkage and frozen-in strains developed during curing cycles. The model was implemented into ABAQUS Finite Element code as a user subroutine UMAT. The macromechanical properties of each composite layer were predicted using a micromechanics based approach, implemented into MATLAB. Results show that wings with cross ply laminates with reducing thickness along the span experienced more warpage than quasi-isotropic laminates. Furthermore, for wings with equal thickness along the span, the results show that the quasi-isotropic laminates experienced more warpage than cross ply laminates. Lastly, the results show that wings with progressively reducing thickness experience twist that is varying from the wing root to the wing tip while wings with a constant thickness experience twist mainly at the centre of the wing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.