Abstract
Despite the widespread use of self-compacting concrete (SCC) in construction in the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict their strength based on the mix components. This is mainly due to the highly non-linear behaviour exhibited by the compressive strength in relation to the components of the concrete mixtures. In the present paper, the application of artificial neural networks (ANNs) to predict the mechanical characteristics of SCC has been investigated. Specifically, ANN models for the prediction of the 28-days compressive strength of admixture-based self-compacting concrete (based on experimental data available in the literature) are presented. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks for the reliable and robust approximation of the compressive strength of self-compacting concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Environmental and Civil Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.