Abstract
Coastal structures may cease to function properly due to seabed scouring. Hence, prediction of the maximum scour depth is of great importance for the protection of these structures. Since scour is the result of a complicated interaction between structure, sediment, and incoming waves, empirical equations are not as accurate as machine learning schemes, which are being widely employed for the coastal engineering modeling. In this paper, which can be regarded as an extension of Pourzangbar et al. (2016), two soft computing methods, a support vector regression (SVR), and a model tree algorithm (M5′), have been implemented to predict the maximum scour depth due to non-breaking waves. The models predict the relative scour depth (Smax/H0) on the basis of the following variables: relative water depth at the toe of the breakwater (htoe/L0), Shields parameter (θ), non-breaking wave steepness (H0/L0), and reflection coefficient (Cr). 95 laboratory data points, extracted from dedicated experimental studies, have been used for developing the models, whose performances have been assessed on the basis of statistical parameters. The results suggest that all of the developed models predict the maximum scour depth with high precision, the M5′ model performed marginally better than the SVR model and also allowed to define a set of transparent and physically sound relationships. Such relationships, which are in good agreement with the existing empirical findings, show that the relative scour depth is mainly affected by wave reflection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.