Abstract

A steady-state model of the production, absorption, passage, and concentration of ruminal VFA and pH is developed from published literature data and is structured to use the feed descriptions and inputs from the net carbohydrate and protein system. Included are the effects of pH on growth rate and yield of structural and non-structural carbohydrate-fermenting bacteria; production of acetate, propionate, butyrate, lactate, and methane; conversion of lactate to VFA; ruminal absorption of acids; and prediction of ruminal pH from dietary measures and from ruminal buffering and acidity. The root mean square error of predicted total VFA concentration was 12 mM. Individual VFA fractions were inadequately predicted. In a review of literature data, effective NDF (eNDF) provided a better correlation with ruminal pH than forage or NDF. Digestion rate of NDF remained at normal levels above pH 6.2, which corresponds to a minimum eNDF of 20% of dietary DM. Further research is needed to determine the individual VFA produced from carbohydrate fractions at various pH, the appropriateness of partitioning the starch and pectin carbohydrate pool into slowly and rapidly degraded fractions, and the effect on microbial yield, total tract digestibility, and predicted energy values of feeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call