Abstract

Ross River virus (RRV) is the most common mosquito-borne disease in Australia, with Queensland recording high incidence rates (with an annual average incidence rate of 0.05% over the last 20 years). Accurate prediction of RRV incidence is critical for disease management and control. Many factors, including mosquito abundance, climate, weather, geographical factors, and socio-economic indices, can influence the RRV transmission cycle and thus have potential utility as predictors of RRV incidence. We collected mosquito data from the city councils of Brisbane, Redlands, and Mackay in Queensland, together with other meteorological and geographical data. Predictors were selected to build negative binomial generalised linear models for prediction. The models demonstrated excellent performance in Brisbane and Redlands but were less satisfactory in Mackay. Mosquito abundance was selected in the Brisbane model and can improve the predictive performance. Sufficient sample sizes of continuous mosquito data and RRV cases were essential for accurate and effective prediction, highlighting the importance of routine vector surveillance for disease management and control. Our results are consistent with variation in transmission cycles across different cities, and our study demonstrates the usefulness of mosquito surveillance data for predicting RRV incidence within small geographical areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.