Abstract

In this study, a linear parametric autoregressive model with external inputs (ARX) and a neural network-based nonlinear autoregressive model with external inputs (NNARX) are developed to predict the thermal behaviour of an open office in a modern building. External and internal climate data recorded over three months were used to build and validate models for predicting dry bulb temperature and relative humidity for different time-scales (30min to 3h ahead). In order to compare the accuracy for different step-ahead predictions, different performance measures, such as goodness of fit, mean squared error, mean absolute error and coefficient of determination between predicted model output and real measurements, were calculated. For the NNARX model, the optimal network structure after training, is subsequently determined by pruning the fully connected network using the optimal brain surgeon strategy. The results demonstrate that both models provide reasonably good predictions but the nonlinear NNARX model outperforms the linear ARX model. These models can both potentially be used for improving indoor air quality by focusing on building intelligence into the controller in HVAC plants, in particular, adaptive control systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.