Abstract
Background: Beta globin gene is responsible for producing beta globin chains that stabilize the structure and function of hemoglobin. This gene expression is controlled by complex interactions of transcriptions factors and its regulatory elements in a specific manner. Disturbed beta globin genes may result in hemoglobinopathies, mainly sickle cell disease and beta thalassemia. It seems interesting that several mutations occurring in intronic region results in severe symptoms to beta thalassemia patients, such an IVS1nt5 G>C. This research aimed to analyze RNA structural alteration effected by intronic mutation of beta thalassemia. Methods: The most prevalent mutation of beta thalassemia in Indonesia was obtained from Ithanet. The RNA secondary structure of IVS1nt5 G>C and beta globin gen (HBB) wildtype were performed by RNAStructure, along with probknot prediction. Results: The result showed that intronic mutation caused conformational change in beta globin secondary structure, either for max expect or base pairing probability approach. The mutant had bigger and more loops that diminished the protein stability. Thus, the structure might undergo dysfunction. Conclusion: The comprehensive structural-functional significance of these findings needs further study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.