Abstract

Experimental and numerical investigations of the ridging in ferritic stainless steels were presented in this paper. Two kinds of ferritic stainless steels exhibiting different levels of ridging were selected as model materials. The measured roughness of the uniaxially elongated specimens up to 15% in rolling direction (RD) was compared to the prediction using a rate-dependent crystal plasticity FEM (CPFEM). Initial textures of the two materials on 5 equi-spaced sequential RD planes were obtained by EBSD measurement. The initial textures were utilized as input data for the constitutive parameters of the crystal plasticity. Measured respective single planar textures were collected all together so that the 5-layer textures complete 3-dimensional structure and they were mapped onto the FE mesh. Ridging profiles predicted by the CPFEM using both every single layer texture and multilayer texture were compared to the experimental results. Predicted ridging profile of a material exhibiting weak ridging by using 5-layer EBSD mapping was in good agreement with the experimental result. On the other hand, prediction by using only single layer texture was efficient to estimate the ridging in a material exhibiting severe ridging due to the elongated cluster of analogous orientations along RD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.