Abstract

This article shows the ability of artificial neural network (ANN) technology for predicting the correlation between rheological properties of multi-component food model systems and their chemical compositions. Multi-component food model systems were made of whey protein isolate (WPI) (2, 4 wt%), Iranian tragacanth gum (TG) (Astragalus gossypinus) (0.5, 1 wt%) and oleic acid (5, 10% v/v). The input parameters of the neural networks (NN) were these chemical compositions, namely WPI and TG concentrations, and oleic acid volume fractions. The output parameters of the NN models were rheological properties of multi-component food model systems (flow and consistency indices, viscosity, loss and storage moduli). Results showed that, ANN with training algorithm of back propagation (BP) was the best one for the creation of nonlinear mapping between input and output parameters. The best topology was 3-10-5. The ANN model predicted the rheological properties of multi-component food model systems with average RMSE 4.529 and average MAE 3.018. These results show that the ANN can potentially be used to estimate rheological parameters of multi-component food model systems from chemical composition. This development may have significant potential to improve product quality control and reduce time and costs by minimizing the rheological experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.