Abstract

We take the return on equity of energy enterprises as the research object to predict it. Our research adopts a new framework to solve multivariable time series problems. Compared to a single regression model, this model focuses more on the results of the regression equation rather than the coefficients of each indicator. Compared to the single machine learning regression method, this model can use the two-way encoder representation of the Transformers model to embed text data into the data, and then use the XGBoost model for regression model processing after PCA dimensionality reduction processing, thereby improving the accuracy of model prediction. Comparative experiments have verified that the method we use has advantages in terms of prediction accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.