Abstract

Due to the importance of amino acids (AAs) as the basic bricks of proteins and their application in the drug and food industries, there is great interest in their separation and identification using simple and inexpensive approaches. Application of predictive models for the determination of the behavior of AAs can reduce trial-and-error experiments. Herein, the retardation factor (RF) of 21 protein AAs were studied using the quantitative structureretardation factor (QSRR) model. The RF values of the AAs in ethanol?sodium azide solution as the mobile phase of reversed phase thin layer chromatography (RP-TLC) were correlated with the structural properties of the AAs. The suggested QSRR indicated excellent fitting and prediction ability (R2train = 0.95 and R2test = 0.94). Furthermore, other statistical tests, such as y-scrambling, cross validation and the Williams plot confirmed the stability, absence of chance and the suitable applicability domain, respectively. It was shown that the sum of geometrical distances between oxygen and nitrogen atoms in an AA molecule is an important factor for the RF values of the AAs in the ethanol? sodium azide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.