Abstract

Major Depressive Disorder (MDD) is a high prevalence disease that needs an effective and timely treatment to prevent its progress and additional costs. Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment option for MDD patients which uses strong magnetic pulses to stimulate specific regions of the brain. However, some patients do not respond to this treatment which causes the waste of multiple weeks as treatment time and clinical resources. Therefore developing an effective way for the prediction of response to the rTMS treatment of depression is necessary. In this work, we proposed a hybrid model created by pre-trained Convolutional Neural Networks (CNN) models and Bidirectional Long Short-Term Memory (BLSTM) cells to predict response to rTMS treatment from raw EEG signal. Three pre-trained CNN models named VGG16, InceptionResNetV2, and EffecientNetB0 were utilized as Transfer Learning (TL) models to construct hybrid TL-BLSTM models. Then an ensemble of these models was created using weighted majority voting which the weights were optimized by Differential Evolution (DE) optimization algorithm. Evaluation of these models shows the superior performance of the ensemble model by the accuracy of 98.51%, sensitivity of 98.64%, specificity of 98.36%, F1-score of 98.6%, and AUC of 98.5%. Therefore, the ensemble of the proposed hybrid convolutional recurrent networks can efficiently predict the treatment outcome of rTMS using raw EEG data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call