Abstract

In this paper, two analytic methods are presented to predict the geometry of resin pockets formed around rigid fiber inclusions at the interlayer of unidirectional prepregs. The bending strain energy is calculated on fiber scale in one method, while it is calculated on layer scale in the other method. For the fiber scale method, several fibers in thickness direction are tied together to account for the bending stiffness increase caused by the interaction between fibers. And for the layer scale method, a single ply is divided into several sublayers to account for the bending stiffness decrease caused by the sliding between adjacent fibers. Both analytic methods can provide the closed-form solution for the resin pocket width, and the analytic results agree well with experimental results. The physical consistency of two methods is proved. It is found that the resin pocket size depends mainly on ply angles of the plies close to the inclusion, and the stacking sequence has some effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call