Abstract

The excessive application of nitrogen in cucumber cultivation may lead to nitrate accumulation in fruits with potential toxicity to humans. Harvested fruits of agricultural crops should be evaluated for residual nitrogen, phosphorus, and potassium (NPK) nutrient levels. This is necessary to avoid nutrient toxicity from the consumption of fresh produce with excessive nutrient levels. Electronic noses are instruments well-suited for the nondestructive detection of fruit and vegetable quality based on volatile organic compound (VOC) emissions. This proof-of-concept study was designed to test the efficacy of using an electronic nose with statistical regression models to indirectly predict excessive fertilizer application based on VOC emissions from cucumber fruits grown under controlled greenhouse conditions to simulate field conditions but eliminate most environmental variables affecting plant volatile emissions. To identify excess nitrogen in cucumber plants, five different levels of urea fertilizer application rates were tested on cucumbers (control without fertilizer, 100, 200, 300, and 400 kg/ha). Chemometric methods, such as the partial least squares regression (PLSR) method, the principal component regression (PCR) method, and the multiple linear regression (MLR) method, were used to create separate regression models to predict nitrogen (N), phosphorus (P), and potassium (K) levels in cucumber fruits following application of different fertilizer rates to greenhouse soils. The correlation coefficients for the MLR model (based on the optimal parameters of PCR and PLSR) were 0.905 and 0.905 for the calibration sets and 0.900 and 0.900 for the validation sets, respectively. The nitrogen prediction model for fruit nitrates was more accurate than other nutrient models. The proposed method could potentially be used to indirectly detect excessive use of fertilizers in cucumber field crops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call