Abstract

Building usage is an important variable in modelling the energetic, material and social properties of a building stock. Gathering this data on large geographical scale, and in the necessary temporal and spatial resolution, that means, on building level, is a challenging task. Machine Learning algorithms like Random Forest have proven useful in predicting building-related features in the past but often resort to training sets of limited geographic scope, for example, cities. This study presents a workflow of predicting the semantic attribute of usage on the level of individual buildings. Based on screening data of the previous ENOB:dataNWG project, a novel building ground-truth data set distributed across Germany, a Random Forest algorithm is used to assess how the German building stock can be classified according to its residential or non-residential use. Different sampling strategies had been applied in order to find a robust evaluation metric for the classifier. Furthermore, the relevance of the feature set is highlighted and it is examined whether regional differences in classification quality exist. Results show that a classification of residential and non-residential building footprints has good prospects with an AUC of up to 0.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.