Abstract

Reservoir sensitivity prediction is an important basis for designing reservoir protection program scientifically and exploiting oil and gas resources efficiently. Researchers have long endeavored to establish a method to predict reservoir sensitivity, but all of the methods have some limitations. Radial basis function (RBF) neural network, which provided a powerful technique to model non-linear mapping and the learning algorithm for RBF neural networks, corresponds to the solution of a linear problem, therefore it is unnecessary to establish an accurate model or organize rules in large number, and it enjoys the advantages such as simple network structure, fast convergence rate, and strong approximation ability, etc. However, different radial basis function has different non-linear mapping ability, and different data require different radial basis functions. Nowadays, the choice of radial basis function in the network is based on experience or test result only, which exerts a great adverse impact on the network performance. In this study, a new RBF neural network with trainable radial basis function was proposed by the linear combination of common radial basis functions. The input parameters of the network were the influence factors of reservoir sensitivity such as porosity and permeability, etc. The output parameter was the corresponding sensitivity index. The network was trained and tested with the data collected from our own experiments. The results showed that the new RBF neural network is effective and improved, of which the accuracy is obviously higher than the network with single radial basis function for the prediction of reservoir sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call