Abstract
Since, it is believed that the native structure of most proteins is defined by their sequences, utilizing data mining methods to extract hidden knowledge from protein sequences, are unavoidable. A major difficulty in mining bioinformatics data is due to the size of the datasets which contain frequently large numbers of variables. In this study, a two-step procedure for prediction of relative solvent accessibility of proteins is presented. In a first "feature selection" step, a small subset of evolutionary information is identified on the basis of selected physicochemical properties. In the second step, support vector regression is used to real value prediction of protein solvent accessibility with these custom selected features of evolutionary information. The experiment results show that the proposed method is an improvement in average prediction accuracy and training time.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.