Abstract

To establish and validate a deep learning radiomics nomogram (DLRN) based on intratumoral and peritumoral regions of MR images and clinical characteristics to predict recurrence risk factors in early-stage cervical cancer and to clarify whether DLRN could be applied for risk stratification. Two hundred and twenty five pathologically confirmed early-stage cervical cancers were enrolled and made up the training cohort and internal validation cohort, and 40 patients from another center were enrolled into the external validation cohort. On the basis of region of interest (ROI) of intratumoral and different peritumoral regions, two sets of features representing deep learning and handcrafted radiomics features were created using combined images of T2-weighted MRI (T2WI) and diffusion-weighted imaging (DWI). The signature subset with the best discriminant features was chosen, and deep learning and handcrafted signatures were created using logistic regression. Integrated with independent clinical factors, a DLRN was built. The discrimination and calibration of DLNR were applied to assess its therapeutic utility. The DLRN demonstrated satisfactory performance for predicting recurrence risk factors, with AUCs of 0.944 (95% confidence interval 0.896-0.992) and 0.885 (95% confidence interval 0.834-0.937) in the internal and external validation cohorts. Furthermore, decision curve analysis revealed that the DLRN outperformed the clinical model, deep learning signature, and radiomics signature in terms of net benefit. A DLRN based on intratumoral and peritumoral regions had the potential to predict and stratify recurrence risk factors for early-stage cervical cancers and enhance the value of individualized precision treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call