Abstract

This study applied advanced data mining techniques for recurrent cervical cancer in survival analysis. The medical records and pathology were accessible by the Chung Shan Medical University Hospital Tumor Registry. Following a literature review, expert consultation, and collection of patients' data, twelve variables studied included age, cell type, tumor grade, tumor size, pT, pStage, surgical margin involvement, LNM, Number of Fractions of Other RT, RT target Summary, Sequence of Locoregional Therapy and Systemic Therapy, LVSI. Two data mining approaches were considered where individuals are expected to experience repeated events, along with concomitant variables. After correcting for the four most important prognostic factors: pStage, Pathologic T, cell type and RT target Summary. Finally, clinical trials should randomize patients stratified by these prognostic factors, and precise assessment of recurrent status could improve outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.