Abstract

To investigate survival outcomes and recurrence patterns using machine learning in patients with salivary gland malignant tumor (SGMT) undergoing adjuvant chemoradiotherapy (CRT). Consecutive SGMT patients were identified, and a data set included nine predictor variables and a dependent variable [disease-free survival (DFS) event] was standardized. The open-source R software was used. Survival outcomes were estimated by the Kaplan-Meier method. The random forest approach was used to select the important explanatory variables. A classification tree that optimally partitioned SGMT patients with different DFS rates was built. In total, 54 SGMT patients were included in the final analysis. Five-year DFS was 62.1%. The top two important variables identified were pathologic node (pN) and pathologic tumor (pT). Based on these explanatory variables, patients were partitioned in three groups, including pN0, pT1-2 pN+ and pT3-4 pN+ with 26%, 38% and 75% probability of recurrence, respectively. Accordingly, 5-year DFS rates were 73.7%, 57.1% and 34.3%, respectively. The proposed decision tree algorithm is an appropriate tool to partition SGMT patients. It can guide decision-making and future research in the SGMT field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.