Abstract

To evaluate rectal toxicity of radiotherapy for prostate cancer using a novel predictive model based on multi-modality and multi-classifier fusion. We retrospectively collected the clinical data from 44 prostate cancer patients receiving external beam radiation (EBRT), including the treatment data, clinical parameters, planning CT data and the treatment plans. The clinical parameter features and dosimetric features were extracted as two different modality features, and a subset of features was selected to train the 5 base classifiers (SVM, Decision Tree, K-nearest-neighbor, Random forests and XGBoost). To establish the multi-modality and multi-classifier fusion model, a multi-criteria decision-making based weight assignment algorithm was used to assign weights for each base classifier under the same modality. A repeat 5-fold cross-validation and the 4 indexes including the area under ROC curve (AUC), accuracy, sensitivity and specificity were used to evaluate the proposed model. In addition, the proposed model was compared quantitatively with different feature selection methods, different weight allocation algorithms, the model based on single mode single classifier, and two integrated models using other fusion methods. Repeated (5 times) 5-fold cross validation of the proposed model showed an accuracy of 0.78 for distinguishing toxicity from non-toxicity with an AUC of 0.83, a specificity of 0.79 and a sensitivity of 0.76. Compared with the models based on a single mode or a single classifier and other fusion models, the proposed model can more accurately predict rectal toxicity of radiotherapy for prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.