Abstract
Rectal temperature (RT) is the foremost physiological variable indicating if an animal is suffering hyperthermia. However, this variable is traditionally measured by invasive methods, which may compromise animal welfare. Models to predict RT have been developed for growing pigs and lactating dairy cows, but not for pregnant heat-stressed ewes. Our aim was to develop a prediction equation for RT using non-invasive physiological variables in pregnant ewes under heat stress. A total of 192 records of respiratory frequency (RF) and hair coat temperature in various body regions (i.e., head, rump, flank, shoulder, and belly) obtained from 24 Katahdin×Pelibuey pregnant multiparous ewes were collected during the last third of gestation (i.e., d 100 to lambing) with a 15 d sampling interval. Hair coat temperatures were taken using infrared thermal imaging technology. Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equations. All predictor variables were positively correlated (P<0.01; r=0.59–0.67) with RT. The adjusted equation which best predicted RT (P<0.01; Radj2=56.15%; CV=0.65%) included as predictors RF and head and belly temperatures. Comparison of predicted and observed values for RT indicates a suitable agreement (P<0.01) between them with moderate accuracy (Radj2=56.15%) when RT was calculated with the adjusted equation. In general, the final equation does not violate any assumption of multiple regression analysis. The RT in heat-stressed pregnant ewes can be predicted with an adequate accuracy using non-invasive physiologic variables, and the final equation was: RT=35.57+0.004 (RF)+0.067 (heat temperature)+0.028 (belly temperature).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.