Abstract
AbstractMachine learning (ML) has quickly emerged in synthetic organic chemistry to predict reaction outcomes such as yields and stereoselectivities. Notably, recent applications of the ML approach showed powerful performance in solving various chemical problems. However, the requirement of numerous descriptors and large datasets hampers the general use by non‐specialists. In this study, simple ML models were developed by utilizing easily available 13C‐NMR chemical shifts of the substrates as familiar descriptors to predict the site‐selectivity of geminal chlorofluorination of unsymmetrical 1,2‐dicarbonyl compounds. We identified that the feed‐forward neural network (FNN) model provides higher accuracy compared to other algorithms. Then, better prediction performance was acquired through streamlined models using minimal, only empirically relevant descriptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.