Abstract
In prediction of railway passenger traffic volume based on support vector regression, different input points make different contribution to the predictive function. A new prediction method for railway passenger volume, named weighted LS-SVM, is presented in this paper, different weighting factors are assigned to each input points by the linear interpolation function. The railway passenger volume from 1985 to 2002 are used and the results show that the weighted LS-SVM outperforms the standard LS-SVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.