Abstract
Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field including space applications. To analyse the radiation heat transfer in a radiating fluid, the simultaneous solution of the radiation transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. In this context the finite volume method (FVM) and the discrete ordinates method (DOM) are usually being incorporated to simulate radiation problems with curvilinear coordinates. In this paper these two representative methods are examined and compared, especially in terms of the directional dependence of radiation intensity due to the discrete division of a solid angle. The FVM shows more reasonable results than the DOM does, as it has less constraint on the angular discretisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.