Abstract

IntroductionThe crucial step in preclinical process of radiopharmaceutical production is internal dosimetry evaluation by different ways to realize radiobiological dose-response relationships and to extract the results for clinical use. Till now several bone-seeking radiopharmaceuticals have been developed for bone metastasis. Interesting features of bisphosphonates attracted attentions to them in the field of radiopharmaceutical therapy and studies on new generation of them have been doing too. Materials and methodsIn this study, we used ZNA as representative of the third generation. The radiopharmaceutical 188Re-ZNA was produced and its radiochemical purity was investigated. Then, the biological distribution of the produced radiopharmaceutical at 1, 2, 4 and 24 h after injection on different organs of mice were investigated. Finally, the absorbed dose of organs in the human body was assessed using the RADAR method. ResultsThe results show 96% radiochemical purity of the 188Re-ZNA radiopharmaceutical. The amount of %ID/g in bone is 1.131% after 1 h and in 24 h it has a significant amount compared to other organs, that is 0.516%. Also dosimetric results show that the highest absorption dose is related to bone and the amount of this dose is 0.050 mGy/MBq. ConclusionConsidering the possibility of producing the 188Re-ZNA radiopharmaceutical, as well as the proper distribution of this radiopharmaceutical in target and non-target organs and increasing the absorbed dose in bone, it can be concluded that this radiopharmaceutical can be useful in the “radiopharmaceutical therapy” in metastases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call