Abstract

Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.