Abstract

All existing algorithms for predicting the content of protein secondary structure elements have been based on the conventional amino-acid-composition, where no sequence coupling effects are taken into account. In this article, an algorithm was developed for predicting the content of protein secondary structure elements that was based on a new amino-acid-composition, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent dataset test. Both indicated a remarkable improvement obtained when using the current algorithm to predict the contents of alpha-helix, beta-sheet, beta-bridge, 3(10)-helix, pi-helix, H-bonded turn, bend and random coil. Examples of the improved accuracy by introducing the new amino-acid-composition, as well as its impact on the study of protein structural class and biologically function, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.