Abstract

Prediction of protein-protein interactions (PPIs) is of great significance. To achieve this, we propose a novel computational method for PPIs prediction based on a similarity network fusion (SNF) model for integrating the physical and chemical properties of proteins. Specifically, the physical and chemical properties of protein are the protein amino acid mutation rate and its hydrophobicity, respectively. The amino acid mutation rate is extracted using a BLOSUM62 matrix, which puts the protein sequence into block substitution matrix. The SNF model is exploited to fuse protein physical and chemical features of multiple data by iteratively updating each original network. Finally, the complementary features from the fused network are fed into a label propagation algorithm (LPA) for PPIs prediction. The experimental results show that the proposed method achieves promising performance and outperforms the traditional methods for the public dataset of H. pylori, Human, and Yeast. In addition, our proposed method achieves average accuracy of 76.65%, 81.98%, 84.56%, 84.01% and 84.38% on E. coli, C. elegans, H. sapien, H. pylori and M. musculus datasets, respectively. Comparison results demonstrate that the proposed method is very promising and provides a cost-effective alternative for predicting PPIs. The source code and all datasets are available at http://pan.baidu.com/s/1dF7rp7N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.