Abstract

Prediction of protein coding regions is an important topic in the field of genomic sequence analysis. Several spectrum-based techniques for the prediction of protein coding regions have been proposed. However, the outstanding issue in most of the proposed techniques is that these techniques depend on an experimentally-selected, predefined value of the window length. In this paper, we propose a new Wide-Range Wavelet Window (WRWW) method for the prediction of protein coding regions. The analysis of the proposed wavelet window shows that its frequency response can adapt its width to accommodate the change in the window length so that it can allow or prevent frequencies other than the basic frequency in the analysis of DNA sequences. This feature makes the proposed window capable of analyzing DNA sequences with a wide range of the window lengths without degradation in the performance. The experimental analysis of applying the WRWW method and other spectrum-based methods to five benchmark datasets has shown that the proposed method outperforms other methods along a wide range of the window lengths. In addition, the experimental analysis has shown that the proposed method is dominant in the prediction of both short and long exons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call