Abstract

Nuclear morphometric signatures can be calculated using nuclear size, shape, DNA content, and chromatin texture descriptors [nuclear morphometric descriptor (NMD)]. We evaluated the use of a patient-specific quantitative nuclear grade (QNG) alone and in combination with routine pathologic features to predict biochemical [prostate-specific antigen (PSA)] recurrence-free survival in patients with prostate cancer. The National Cancer Institute Cooperative Prostate Cancer Tissue Resource (NCI-CPCTR) tissue microarray was prepared from radical prostatectomy cases treated in 1991 to 1992. We assessed 112 cases (72 nonrecurrences and 40 PSA recurrences) with long-term follow-up. Images of Feulgen DNA-stained nuclei were captured and the NMDs were calculated using the AutoCyte system. Multivariate logistic regression was used to calculate QNG and pathology-based solutions for prediction of PSA recurrence. Kaplan-Meier survival curves and predictive probability graphs were generated. A QNG signature using the variance of 14 NMDs yielded an area under the receiver operator characteristic curve (AUC-ROC) of 80% with a sensitivity, specificity, and accuracy of 75% at a predictive probability threshold of > or =0.39. A pathology model using the pathologic stage and Gleason score yielded an AUC-ROC of 67% with a sensitivity, specificity, and accuracy of 70%, 50%, and 57%, respectively, at a predictive probability threshold of > or =0.35. Combining QNG, pathologic stage, and Gleason score yielded a model with an AUC-ROC of 81% with a sensitivity, specificity, and accuracy of 75%, 78%, and 77%, respectively, at a predictive probability threshold of > or =0.34. PSA recurrence is more accurately predicted using the QNG signature compared with routine pathology information alone. Inclusion of a morphometry signature, routine pathology, and new biomarkers should improve the prognostic value of information collected at surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.