Abstract

A change in the normal concentration of essential trace elements in the human body might lead to major health disturbances. In this study, hair samples were collected from 115 human subject, including 55 healthy people and 60 patients with prostate cancer. The concentrations of 20 trace elements (TEs) in these samples were measured by inductively coupled plasma-mass spectrometry. Asupport vector machine was used to investigate the relationship between TEs and prostate cancer. It is found that, among the 20 TEs, 10 (Mg P, K, Ca, Cr, Mn, Fe. Cu, Zn, and Se) are related to the risk of prostate cancer. These 10 TEs were used to build the prediction model for prostate cancer. The model obtained can satisfactorily distinguish the healthy samples from the cancer samples. Furthermore, the cross-validation by leaving-one method proved that the prediction ability of this model reaches as high as 95.8%. It is practical to predict the risk of prostate cancer using this model in the clinics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.