Abstract

As with many substances derived from natural products, pyrolysis bio-oils are complex chemical mixtures and are extremely challenging to chemically characterize, requiring multiple separation and pretreatment steps followed by several different analytical techniques that need tedious adjustments and modifications when sample properties change. In this study, we present a way to simplify this analysis by using 13C NMR to characterize such substances as a whole without modification. Using partial least-squares (PLS) regression, we report what we believe to be the first reported use of 13C NMR to derive elemental composition information (mass fractions of C, H, N, and O) as well as the enthalpy of combustion (higher heating value), phenol and cresols concentrations, and the total acid number. Several PLS models were created correlating these various properties with the binned intensities of the 1H and 13C NMR spectra of 73 different samples consisting of pyrolysis bio-oils from various biomass sources and treatment protocols as well as finished fuels (gasoline, diesel, and biodiesel) and small molecule standards. Two models based exclusively on 13C NMR data demonstrated the best overall ability to predict these same properties for unknown samples. The R2 and RMSE of the predicted values are discussed in detail and are acceptable for many biofuel-related applications. That such properties and compositional measurements may be extracted from 13C NMR spectra is a direct result of the detailed chemical structural information influencing the chemical shifts and resonance patterns. Because these models were built using a wide range of samples and conditions, they are expected to also be useful for a wider range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.