Abstract
It is important to predict the propeller tip vortex flow and its effect on hull vibration and noise. In our previous work, the tip vortex flow of the David Taylor Model Basin (DTMB) 5168 propeller model has been studied based on the Reynolds Averaged Navier-Stokes equation (RANS) solution using various eddy viscosity and Reynolds Stress turbulence models. A set of structural grids were used, however, large Jacobian values of the structural grids around the propeller tip region led to the convergence problem and inaccurate solutions. In the present work, the numerical prediction of the same propeller model was improved by using a steady-state RANS solver simpleFoam in OpenFOAM with locally refined unstructured grid along the tip vortex trajectory. The computed thrust and torque coefficients and the velocity components across the vortex core are compared with experimental data and results in the previous studies. Improvement in the prediction of velocity components across the tip vortex core were achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.